

OPERATIONS ON DIGRAPHS AND DIGRAPH FOLDING

E.EL-KHOLY ${ }^{1}$, H. AHMED ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Shoubra Engineering, Banha University , Banha , Egypt.

Abstract

In this paper we examined the relation between digraph folding of a given pair of digraphs and digraph folding of new digraphs generated from these given pair of digraphs by some known operations like union, intersection, join, Cartesian product and composition. We first redefined these known operations for digraphs, then we defined some new maps of these digraphs and we called these maps union, intersection, join, Cartesian and composition dimaps. In each case we obtained the necessary and sufficient conditions, if exist ,for a dimap to be digraph folding. Finally we explored the digraph folding, if there exist any, by using the adjacency matrices. Key words: Digraphs, adjacency matrices, digraph folding , union, intersection, join, the Cartesian product and the composition of digraphs .

©KY PUBLICATIONS

1. INTRODUCTION

Graph folding is introduced by E.EL-Kholy and A.AL-Esway [3].The notion of digraph folding is introduced by E.EL-Kholy and H.Ahmed [4].
Definitions (1.1)

1) A digraph D consists of elements, called vertices and a list of ordered pairs of these elements, called arcs. The set of vertices is called the vertex set of D, denoted by $V(D)$, and the list of arcs is called the arc list of D, denoted by $A(D)$.If v and w are vertices of D, then an arc of the form vw is said to be directed from v to w. The digraph with no loops is called simple. Two or more arcs joining the same pair of vertices in the same direction is called multiple arc [5].
2) Let D_{1} and D_{2} be digraphs and f: $D_{1} \rightarrow D_{2}$ a continuous function. Then f is called a digraph map if, (i)For each vertex $v \in V\left(D_{1}\right), f(v)$ is a vertex in $V\left(D_{2}\right)$. (ii)For each arc $e \in A\left(D_{1}\right), \operatorname{dim}(f(e)) \leq$ $\operatorname{dim}(e)[4]$.
3) Let D_{1} and D_{2} be simple digraphs, we call a digraph map f: $D_{1} \rightarrow D_{2}$ a digraph folding iff f maps vertices to vertices and arcs to arcs, i.e., for each $v \in V\left(D_{1}\right), f(v) \in V\left(D_{2}\right)$ and for each e $A\left(D_{1}\right)$, $f(e) \in A\left(D_{2}\right)$ [4].
If the digraph contains loops, then the digraph folding must send loops to loops but of the same direction. The set of digraph foldings between digraphs D_{1} and D_{2} is denoted by $Đ\left(D_{1}, D_{2}\right)$ and from D into itself by $\boxplus(D)$.
4) Let D be a diagraph without loops, with n vertices labeled ${ }_{1,2,3, \ldots, n}$. The adjacency matrix $M(D)$ is the nxn matrix in which the entry in row i and column j is the number of arcs from vertex i to vertex j [5].

Proposition (1.2)

Let D be a connected digraph without loops with n vertices. Then a digraph folding of D into itself may be defined, if there is any, as a digraph map f of D to an image $f(D)$ by mapping :

The multiple arc into one of its arcs.
I. (a)The vertex v_{i} to the vertex v_{j} if the numbers appearing in the adjacency matrix in the $i^{\text {th }}$ and $j{ }^{\text {th }}$ rows (or columns) are the same.
(b)The vertex v_{i} to the vertex v_{j} if the entries of the $i^{\text {th }}$ and $j^{\text {th }}$ rows are zeros and if the $i^{\text {th }}$ and j columns are the same, or there exists a row k which has numbers ${ }_{1}$ in the $i^{\text {th }}$ and $j^{\text {th }}$ columns.
II. (a)The arc $\left(v_{i}, v_{k}\right)$ to the $\operatorname{arc}\left(v_{j}, v_{k}\right)$ if the $i^{\text {th }}$ and $j^{\text {th }}$ rows (or columns) are the same .
(b) The $\operatorname{arc}\left(v_{i}, v_{j}\right)$ to the $\operatorname{arc}\left(v_{i}, v_{k}\right)$ if the $j^{\text {th }}$ and $k^{\text {th }}$ columns (or rows) are the same .

In general the arc $\left(v_{i}, v_{j}\right)$ will be mapped to the $\operatorname{arc}\left(v_{k}, v_{l}\right)$ if v_{i} mapped to v_{k} and v_{j} mapped to $v_{l},[4]$.

(2) Union of digraphs

In the following we redefine the known operation , union, given for two simple graphs [3] , for digraphs.

Definition (2-1)

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be simple digraphs. Then the simple digraph $D=(V, A)$ where $V=V_{1} U V_{2}$ and $A=A_{1} \cup A_{2}$ is called the union of digraphs D_{1} and D_{2} and is denoted by $D_{1} \cup D_{2}$. When D_{1} and D_{2} are vertex disjoint $D_{1} U D_{2}$ is denoted by, $D_{1}+D_{2}$, and is called the sum of digraphs D_{1} and D_{2}.

Definition (2^{-2})

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be simple digraphs. Let $f: D_{1} \rightarrow D_{1}$ and $g: D_{2} \rightarrow D_{2}$ be digraph maps. By the union dimap of the digraph maps f and g, $f \cup g$, we mean a digraph map from the digraph $D_{1} U D_{2}$ into itself.
fUg : $D_{1} U D_{2} \rightarrow D_{1} U D_{2}$ such that $f(v)=g(v)$, for all $v \in V_{1} \cap V_{2}, f(e)=g(e)$, for all $e \in A_{1} \cap A_{2}$ defined by
(i) For each $v \in V_{1} \cup V_{2},(f U g)(v)=\left\{\begin{array}{l}f(v), \text { if } v \in V_{1} \\ g(v), \text { if } v \in V_{2}\end{array}\right.$
(ii) For each e $A_{1} \cup A_{2},(f \cup g)(e)=\left\{\begin{array}{l}f(e), \text { if } e \in A_{1} \\ g(e), \text { if } e \in A_{2}\end{array}\right.$

Theorem (2-3)

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be simple connected digraphs. Let $f: D_{1} \rightarrow D_{1}$ and $g: D_{2} \rightarrow D_{2}$ be digraph maps. Then the union dimap fUg is a digraph folding iff f and g are digraph foldings. In this case $(f \cup g)\left(D_{1} \cup D_{2}\right)=f\left(D_{1}\right) \cup g\left(D_{2}\right)$ The proof is almost as in [2].

Example 2.4

Let $D_{1}=\left(V_{1}, A_{1}\right)$, where $V_{1}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}\right\}$ and $\mathrm{A}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\}$. Let $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $V_{2}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{v}_{3}, \mathrm{~V}_{5}\right\}$ and $\mathrm{A}_{2}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{6}\right\}$, see Fig. 1 (a).

Now let $f \doteq\left(D_{1}\right)$ be a digraph folding defined by $f\left\{v_{1}\right\}=\left\{v_{3}\right\}$ and $f\left\{e_{1}, e_{3}\right\}=\left\{e_{2}, e_{5}\right\}$, where through this paper the omitted vertices and arcs will be mapped to themselves. Also, let $\mathrm{g} 甲()$ be a digraph folding defined by $g\left\{v_{1}\right\}=\left\{v_{3}\right\}$ and $g\left\{e_{1}\right\}=\left\{e_{2}\right\}$, see Fig.1(a). The union dimap fUg: $D_{1} U D_{2} \rightarrow D_{1} U D_{2}$ defined by ($f U g$) $\left\{v_{1}\right\}=\left\{v_{3}\right\}$ and ($f U g$) $\left\{e_{1}, e_{3}\right\}=\left\{e_{2}, e_{5}\right\}$ is a digraph folding, see Fig. ${ }_{1}$ (b).The adjacency matrices of D_{1}, D_{2} and $D_{1} U D_{2}$ are as follows:

By using only these adjacency matrices we can define the digraph folding .For example ,by using the adjacency matrix $M\left(D_{1}\right)$ we can easily see that the vertex v_{1} will be mapped to the vertex v_{3} since the first and third rows of $M\left(D_{1}\right)$ have the same entries. Also the $\operatorname{arc}\left(v_{1}, v_{4}\right)=e_{3}$ will be mapped to the arc $\left(v_{3}, v_{4}\right)=e_{5}$ since the ${ }_{1} s t$ and ${ }_{3} r d$ rows are the same, finally the $\operatorname{arc}\left(v_{2}, v_{1}\right)=e_{1}$ will be mapped to the arc
$\left(v_{2}, v_{3}\right)=e_{3}$ since the ${ }_{1}$ st and ${ }_{3} r d$ columns are the same. Again by using $M\left(D_{2}\right)$ and $M\left(D_{1} U D_{2}\right)$ we can describe the digraph folding of both D_{2} and $D_{1} U D_{2}$

(3) Intersection of digraphs

Definition (3.1)

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be simple digraphs. Then the simple digraph $D=(V, A)$ where $V=$ $V_{1} \cap V_{2}$ and $A=A_{1} \cap A_{2}$ is called the intersection of digraphs D_{1} and D_{2} and is denoted by $D_{1} \cap D_{2}$.
Definition (3.2)
Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be simple digraphs .Let $f: D_{1} \rightarrow D_{1}$ and $g: D_{2} \rightarrow D_{2}$ be digraph maps. If f and g agree on $V_{1} \cap V_{2}$ and $A_{1} \cap A_{2}$ then by the intersection dimap of the digraph maps f and g, f \cap, we mean a digraph map $f \cap g$: $D_{1} \cap D_{2} \rightarrow D_{1} \cap D_{2}$, where $V_{1} \cap V_{2} \neq \varnothing$ defined by :
(i) For all $v \in V_{1} \cap V_{2},(f \cap g)(v)=f(v)=g(v)$
(ii) For all $e \in A_{1} \cap A_{2},(f \cap g)(e)=f(e)=g(e)$

Theorem (3-3)
Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be simple connected digraphs. Let $f: D_{1} \rightarrow D_{1}$ and $g: D_{2} \rightarrow D_{2}$ be digraph maps. Then the intersection dimap $f \cap g$ is a digraph folding iff f and g are digraph foldings . In this case $(f \cap g)\left(D_{1} \cap D_{2}\right)=f\left(D_{1}\right) \cap g\left(D_{2}\right)$ The proof is easy.
Example (3-3)
let $D_{1}=\left(V_{1}, A_{1}\right)$, where $V_{1}=\left\{\mathrm{V}_{1}, \mathrm{v}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\mathrm{A}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e} 7, \mathrm{e} 8\right\}$. Let $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\{$ $\left.v_{1}, v_{5}, v_{6}, v 7\right\}$ and $A_{2}=\left\{e_{5}, e 8, e 9, e_{1} 0, e_{11}\right\}$,see Fig.2 (a).

Now let $f ~ Ð\left(D_{1}\right)$ be a digraph folding defined by $f\left\{v_{1}, v_{2}\right\}=\left\{v_{5}, v_{4}\right\} a n d$ f $\left\{e_{1}, e_{2}, \mathrm{e} 7, \mathrm{e} 8\right\}=$ $\left\{\mathrm{e}_{4}, \mathrm{e}_{3}, \mathrm{e}_{6}, \mathrm{e}_{5}\right\}$. Also , let $\mathrm{g} ⿴(\mathrm{D})$ be a digraph folding defined by $\mathrm{g}\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{5}\right\}$ and $\mathrm{g}\{\mathrm{e} 8, \mathrm{e} 9\}=\left\{\mathrm{e}_{5}, \mathrm{e}_{11}\right\}$, see Fig. ${ }_{1}(\mathrm{a})$.The intersection dimap
$f \cap g: D_{1} \cap D_{2 \rightarrow} D_{1} \cap D_{2}$ defined by $(f \cap g)\left\{v_{1}\right\}=\left\{v_{5}\right\}$ and ($f \cap g$) $\{e 8\}=\left\{e_{5}\right\}$ is digraph folding, see Fig.2(b).The adjacency matrices of D_{1}, D_{2} and $D_{1} \cap D_{2}$ are as follows :

$$
\begin{aligned}
& M\left(D_{1}\right)=\begin{array}{c}
v_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\left[\begin{array}{lllll}
0 & 1 & v_{3} & v_{4} & v_{5} \\
0 & v_{6} \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 \\
0
\end{array}\right] \quad M\left(D_{2}\right)=\begin{array}{cccc}
v_{1} & v_{5} & v_{6} & v_{7} \\
v_{1} \\
v_{5} \\
v_{6} \\
v_{7}
\end{array}\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \text { and } M\left(D_{1} \cap D_{2}\right)=\begin{array}{r}
v_{1} \\
v_{1} \\
v_{5} \\
v_{6}
\end{array}\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

By using only these adjacency matrices we can define the digraph folding. For example, by using the adjacency matrix $M\left(D_{1} \cap D_{2}\right)$ we can easily see that the vertex v_{1} will be mapped to the vertex v_{5}, since the first and second rows have the same entries. Also, the $\operatorname{arc}\left(v_{1}, v_{6}\right)=e 8$ can be mapped to the $\operatorname{arc}\left(v_{5}, v_{6}\right)=e_{5}$, since the first and second rows are the same. Again by using $M\left(D_{1}\right)$ and $M\left(D_{2}\right)$ we can describe the digraph foldings of both D_{1} and D_{2}.

(4) Join of diagraphs

Definition (4-1)
Let D_{1} and D_{2} be vertex dis joint diagraphs. Then we define the join digraph, $D_{1} \vee D_{2}$, to be the digraph in which each vertex of D_{1} (or D_{2}) is adjacent to the vertices of D_{2} (or D_{1}).

Definition (4-2)
Let $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right), \mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right), \mathrm{D}_{3}=\left(\mathrm{V}_{3}, \mathrm{~A}_{3}\right)$ and $\mathrm{D}_{4}=\left(\mathrm{V}_{4}, \mathrm{~A}_{4}\right)$ be simple digraphs.
Let $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{4}$ be digraph maps. By a join dimap,we mean a digraph map, fvg : $\mathrm{D}_{1} \vee \mathrm{D}_{2} \rightarrow \mathrm{D}_{3} \vee \mathrm{D}_{4}$ defined by
(i) For each vertex $v \in V_{1} \cup V_{2},(f v g)(v)= \begin{cases}f(v), \text { if } v & V_{1} \\ g(v), \text { if } v & V_{2}\end{cases}$
(ii) For each arce $=\left(v_{1}, v_{2}\right), v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, $(f v g)\{e\}=\left\{f\left(v_{1}\right), g\left(v_{2}\right) \in A_{3} v_{4}\right.$.
(iii) If $e=\left(u_{1}, v_{1}\right) \in A_{1}$, then (fvg) $\{e\}=(f v g)\left\{\left(u_{1}, v_{1}\right)\right\}=\left\{f\left(u_{1}\right), f\left(v_{1}\right)\right\}$, Also if $e=\left(u_{2}, v_{2}\right) \in A_{2}$, then $(f v g)\{e\}=$ (fvg) $\left\{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)\right\}=\left\{\mathrm{g}\left(\mathrm{u}_{2}\right), \mathrm{g}\left(\mathrm{v}_{2}\right)\right\}$
Note that If $f\left\{u_{1}\right\}=f\left\{v_{1}\right\}$, then the image of the join dimap ($f v g$) $\{e\}$ will be a vertex of $D_{3} \vee D_{4}$ and thus is not a digraph folding .

Theorem (4-3)

Let D_{1}, D_{2}, D_{3} and D_{4} be digraphs, let $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{4}$ be digraph maps . Then $Ð\left(D_{1} \vee D_{2}, D_{3} \vee D_{4}\right)$ is a digraph folding iff f and g are digraph foldings.
Proof:
Suppose f and g are digraph foldings. Then (fvg) $\left\{\mathrm{V}_{1} U \mathrm{~V}_{2}\right\}=\left\{f\left(\mathrm{~V}_{1}\right) \cup g\left(\mathrm{~V}_{2}\right)\right\}$.But $\left.f\left(\mathrm{~V}_{1}\right) \in \mathrm{D}_{3}\right), g\left(\mathrm{~V}_{2}\right) \in \mathrm{V}\left(\mathrm{D}_{4}\right)$.Thus $\left\{f\left(V_{1}\right) \cup g\left(V_{2}\right)\right\} \in V\left(D_{3} v D_{4}\right)$, i.e., fvg maps vertices to vertices .Now, let $e \in A\left(D_{1} v D_{2}\right)$.Then either $e \in A\left(D_{1}\right)$ or $e \in A\left(D_{2}\right)$ or e is an arc joining a vertex of D_{1} (or D_{2}) to a vertex of D_{2} (or D_{1}). In the first two cases and since each of f and g is a digraph folding ,(fvg) $\{e\} A\left(D_{3} v D_{4}\right)$.Now, if $e=\left(v_{1}, v_{2}\right), v_{1} \in D_{1}$ and $v_{2} \in D_{2}$. Then $(f v g)\{e\}=(f v g)\left\{\left(v_{1}, v_{2}\right)\right\}=\left\{f\left(v_{1}\right), g\left(v_{2}\right)=\left\{\left(v_{3}, v_{4}\right)\right\} A\left(D_{3} v^{2}\right)\right.$. Thus fvg maps arcs to arcs and
hence the join digraph map is a digraph folding. The converse is guaranteed by the definition of the join digraph.

Example (4-4)

Let $D_{1}=\left(V_{1}, A_{1}\right)$, where $V_{1}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}\right\}$ and $\mathrm{A}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}\right\}$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\left\{\mathrm{v}_{5}, \mathrm{~V}_{6}, \mathrm{~V} 7\right\}$ and $\mathrm{A}_{2}=$ $\left\{\mathrm{e}_{5}, \mathrm{e}_{6}\right\}$, see Fig. 3 (a).

Fig. 3

Let $\mathrm{f} 甲\left(D_{1}\right)$ be defined by $f\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{3}\right\}$ and $f\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}=\left\{\mathrm{e}_{4}, \mathrm{e}_{3}\right\}$. Also , let $\mathrm{g} 甲\left(D_{2}\right)$ be defined by $g\left\{\mathrm{v}_{5}\right\}=\{\mathrm{v} 7\}$ and $g\left\{e_{5}\right\}=\left\{e_{6}\right\}$.The join dimap
fvg: $D_{1} \vee D_{2} \rightarrow D_{1} \vee D_{2}$ is defined by (fvg) $\left\{v_{1}, v_{5}\right\}=\left\{v_{3}, v 7\right\}$ and (fvg) $\left\{\mathrm{e}_{1}\right\}=$
$(f \vee g)\left\{\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)\right\}=\left\{\left(\mathrm{v}_{4}, \mathrm{v}_{3}\right)\right\}=\left\{\mathrm{e}_{4}\right\}$,also, $(\mathrm{fvg})\left\{\mathrm{e}_{5}\right\}=(\mathrm{fvg})\left\{\left(\mathrm{v}_{6}, \mathrm{v}_{5}\right)\right\}=\left\{\left(\mathrm{v}_{6}, \mathrm{v} 7\right)\right\}=\left\{\mathrm{e}_{6}\right\}$ and $(\mathrm{fvg})\left\{\left(\mathrm{v}_{5}, \mathrm{v}_{1}\right)\right\}=\left\{\left(\mathrm{v} 7, \mathrm{v}_{3}\right)\right\}$, and so on, see Fig.3 (b) .The adjacency matrices of D_{1}, D_{2} and $D_{1} v D_{2}$ are as follows:
$M\left(D_{1}\right)=\begin{aligned} & v_{1} v_{1} \\ & v_{2} \\ & v_{3} \\ & v_{4}\end{aligned}\left[\begin{array}{llll}0 \\ 1 & v_{2} & v_{3} & v_{4} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], \quad M\left(D_{2}\right)=\begin{aligned} & v_{5} \\ & v_{5} \\ & v_{6} \\ & v_{7}\end{aligned}\left[\begin{array}{lll}0 & v_{6} & v_{7} \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0\end{array}\right]$
And $M\left(D_{1} \vee D_{2}\right)=\begin{gathered}v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{6} \\ v_{7}\end{gathered}\left[\begin{array}{ccccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$
By using these adjacency matrices we can describe the digraph foldings. The adjacency matrix $M\left(D_{1}\right)$ suggests that the vertex v_{1} can be mapped to the vertex v_{3} since the first and third columns of $M\left(D_{1}\right)$ have the same entries. Also the $\operatorname{arc}\left(v_{4}, v_{1}\right)=e_{1}$ can be mapped to the $\operatorname{arc}\left(v_{4}, v_{3}\right)=e_{4}$ and the $\operatorname{arc}\left(v_{2}, v_{1}\right)=e_{2}$ can be mapped to the $\operatorname{arc}\left(v_{2}, v_{3}\right)=e_{3}$ since the 1 st and ${ }_{3} r d$ columns are the same.Again by using $M\left(D_{2}\right)$ and $M\left(D_{1} v D_{2}\right)$ we can describe the digraph foldings of both D_{2} and $D_{1} v D_{2}$.

(5) The Cartesian product of diagraph

Definition (5-1)
The Cartesian product $D_{1} \times D_{2}$ of two simple diagraphs is a simple diagraph with vertex set $V\left(D_{1} \times D_{2}\right)=V_{1} \times V_{2}$ and arc set $A\left(D_{1} \times D_{2}\right)=\left[\left(A_{1} \times V_{2}\right) U\left(V_{1} \times A_{2}\right)\right]$
such that two vertices (u_{1}, u_{2}) and (v_{1}, v_{2}) are adjacent in $D_{1} \times D_{2}$ iff ,either
I. $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in D_{2}, or
II. u_{1} is adjacent to v_{1} in $D_{1}, u_{2}=v_{2}$. Definition (5-2)

Let D_{1}, D_{2}, D_{3} and D_{4} be simple digraphs. Let $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{4}$ be diagraph maps. Then by the Cartesian product dimap fxg : $D_{1} \times D_{2} \rightarrow D_{3} \times D_{4}$ we mean a dimap defined as follows :
I. If $v=\left(v_{1}, v_{2}\right) \in V_{1} x V_{2}, v_{1} \in V_{1}, v_{2} \in V_{2}$, then $(f x g)(v)=(f x g)\left(v_{1}, v_{2}\right)=\left(f\left(v_{1}\right), g\left(v_{2}\right)\right) \quad V_{3} x V_{4}$
II. If the arc $e=\left\{\left\{\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{j}\right)^{\prime},\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{k}}\right)\right\}$, where $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}} \in \mathrm{V}\left(\mathrm{D}_{1}\right)$ and $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{k}} \in \mathrm{V}\left(\mathrm{D}_{2}\right)$, then $(f x g)\{e\}=(f x g)\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\} \mathrm{k}\right)\right\}=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{k}}\right)\right\}$.
III. If the arc $e=\left\{\left(\left\{v_{1}\right\}_{i},\left\{v_{2}\right\}_{j}\right),\left(\left\{v_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}$, where $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}} \in \mathrm{V}\left(\mathrm{D}_{1}\right)$ and $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}} \in \mathrm{V}\left(\mathrm{D}_{2}\right)$, then $(f \times g)\{e\}=(f x g)\left\{\left(\left\{v_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}=\left\{\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}$. Note that if $g\left\{v_{2}\right\} j=g\left\{v_{2}\right\}$ kor $f\left\{v_{1}\right\} i=f\left\{v_{1}\right\} k$, the image of the arc will be a vertex
Theorem (5-3)
Let D_{1}, D_{2}, D_{3} and D_{4} be digraphs, let $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{4}$
be digraph maps. Then $(f \times g) \in \oplus\left(D_{1} \times D_{2}, D_{3} \times D_{4}\right)$ is a digraph folding iff
$f \doteq\left(D_{1}, D_{3}\right)$ and $g Đ\left(D_{2}, D_{4}\right)$ are digraph foldings. In this case $(f \times g)\left(D_{1} \times D_{2}\right)=f\left(D_{1}\right) \times g\left(D_{2}\right)$.

Proof:

Suppose f and g are digraph foldings. Then for each vertex $\left(v_{1}, v_{2}\right) \in V\left(D_{1} \times D_{2}\right)=V_{1} \times V_{2},(f x g)\left\{\left(v_{1}, v_{2}\right)\right\}=\left\{\left(f\left(v_{1}\right), g\left(v_{2}\right)\right)\right\}=\left(v_{3}, v_{4}\right) \in V\left(D_{1} \times D_{2}\right)=V_{3} \times V_{4}$, i.e., fxg maps vertices to vertices. Now, let e $A\left(D_{1} \times D_{2}\right)$, then if $e=\left\{\left(\left\{v_{1}\right\} i,\left\{v_{2}\right\} j\right),\left(\left\{v_{1}\right\} k,\left\{v_{2}\right\} j\right)\right\}$, where $\left\{v_{1}\right\} i$ is adjacent to $\left\{v_{1}\right\} k$ in D_{1} and $\left\{\mathrm{v}_{2}\right\} \mathrm{j}$ then $(\mathrm{fxg})\{\mathrm{e}\}=(\mathrm{fxg})\left\{\left(\left\{\mathrm{v}_{1}\right\} \mathrm{i},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\left\{\mathrm{v}_{1}\right\} \mathrm{k},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right)\right\}=\left\{\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\} \mathrm{i},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\} \mathrm{k},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right)\right\}$, since
$\left\{v_{1}\right\} i$ is adjacent to $\left\{v_{1}\right\} k$ and f is a digraph folding, Then $f\left\{v_{1}\right\} i=f\left\{v_{1}\right\} k$.Thus ($f x g$) $\{e\} A\left(D_{3} x D_{4}\right)$.By the same procedure, if $e=\left\{\left(\left\{v_{1}\right\} i,\left\{v_{2}\right\} j\right),\left(\left\{v_{1}\right\} i,\left\{v_{2}\right\} k\right)\right\}$, where $\left\{\mathrm{v}_{1}\right\} \mathrm{i} V\left(D_{1}\right)$ and $\left\{\mathrm{v}_{2}\right\}$ j is adjacent to $\left\{\mathrm{v}_{2}\right\}$ kin D_{2}, then $(f x g)\{e\} \in A\left(D_{3} \times D_{4}\right)$ i.e., fxg maps arcs to arcs and hence the Cartesian product dimap is a digraph foldings. To prove the converse suppose that (fxg) is a digraph folding and for g,is not a digraph folding. In this case f, or g, will maps an arc to a vertex , say $f\left\{\left(u_{1}, v_{1}\right)\right\}=\left\{u_{3}\right\} \in V\left(D_{3}\right)$. Then $(f x g)\left\{\left(\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right)\right\}=\left\{\left(\mathrm{f}\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(f\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right)\right\}=\left\{\left(\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right)\right\} \in \mathrm{V}\left(\mathrm{D}_{3} \mathrm{x} \mathrm{D}_{4}\right)$. This contradicts the assumption and thus each of f and g must be a digraph folding .

Examples (5-4)

(a) Let $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right)$, where $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, u_{2}, u_{3}, u_{4}\right\}, \mathrm{A}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}\right\}$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right\}, \mathrm{A}=$ $\left\{\mathrm{e}_{5}, \mathrm{e}_{6}\right\}$, see Fig. $4(\mathrm{a})$.

Fig. 4

Let $f \oplus()$ defined by $f\left\{u_{4}\right\}=\left\{u_{2}\right\}$ and $f\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}=\left\{\mathrm{e}_{4}, \mathrm{e}_{3}\right\}$.Also, let $\mathrm{g} \oplus()$ defined by $g\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{3}\right\}$ and $\mathrm{g}\left\{\mathrm{e}_{5}\right\}=$ $\left\{\mathrm{e}_{6}\right\}$. Then the Cartesian product dimap $\mathrm{fxg}: \mathrm{D}_{1} \times D_{2} \rightarrow D_{3} \times D_{4}$ is defined as follows : $(f \times g)\left\{\left(u_{4}, v_{1}\right),\left(u_{4}, v_{2}\right),\left(u_{4}, v_{3}\right),\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{1}\right)\right\}=\left\{\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{2}, v_{3}\right),\left(u_{1}, v_{3}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{3}\right)\right\}$.Also, $(f \times g)\left\{\left(\left(u_{4}, v_{1}\right),\left(u_{3}, v_{1}\right)\right),\left(\left(u_{3}, v_{1}\right),\left(u_{3}, v_{2}\right)\right)\right\}=\left\{\left(\left(u_{2}, v_{3}\right),\left(u_{3}, v_{3}\right)\right),\left(\left(u_{3}, v_{3}\right),\left(u_{3}, v_{2}\right)\right)\right\}$ and so on, see Fig.4(b).The adjacency matrices of D_{1}, D_{2} and $D_{1} \times D_{2}$ are as follows:

$$
M\left(D_{1}\right)=\begin{gathered}
u_{1} \\
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{gathered}\left[\begin{array}{lll}
0 & u_{3} & u_{4} \\
u_{4} & 1 & 0 \\
1
\end{array}\right] \quad \begin{array}{r}
v_{1} \\
v_{2} \\
v_{1} \\
0
\end{array}\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0
\end{array} 0\right.
$$

	(u_{1}, v_{1})	$\left(u_{2}, v_{1}\right)$	$\left(u_{3}, v_{1}\right)$	$\left(u_{4}, v_{1}\right)$	$\left(u_{1}, v_{2}\right)$	$\left(u_{2}, v_{2}\right)$	$\left(u_{3}, v_{2}\right)$	$\left(u_{4}, v_{2}\right)$	$\left(u_{1}, v_{3}\right)$	$\left(u_{2}, v_{3}\right)$	$\left(u_{3}, v_{3}\right)$	$\left(u_{4}, v_{3}\right)$
(u_{1}, v_{1})	${ }^{0}$	1	0	1	1	0	0	0	0	0	0	0
$\left(u_{2}, v_{1}\right)$	0	0	1	0	0	1	0	0	0	0	0	0
$\left(u_{3}, v_{1}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
$\left(u_{4}, v_{1}\right)$	0	0	1	0	0	0	0	1	0	0	0	0
$\left(u_{1}, v_{2}\right)$	0	0	0	0	0	1	0	0	0	0	0	0
$\left(u_{2}, v_{2}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
$M\left(D_{1} \times D_{2}\right)\left(u_{3}, v_{2}\right)$	0	0	0	0	0	0	0	0	0	0	0	0
$\left(u_{4}, v_{2}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
$\left(u_{1}, v_{3}\right)$	0	0	0	0	1	0	0	0	0	1	0	1
$\left(u_{2}, v_{3}\right)$ $\left(u_{3}, v_{3}\right)$	0	0	0	0	0	1	0	0	0	0	1	0
$\left(u_{3}, v_{3}\right)$ $\left(u_{4}, v_{3}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
$\left(u_{4}, v_{3}\right)$	0	0	0	0	0	0	0	1	0	0	1	0

Once again we can describe the digraph foldings by using $M\left(D_{1}\right), M\left(D_{2}\right)$ and $M\left(D_{1} X D_{2}\right)$.For example, from $M\left(D_{1} \times D_{2}\right)$ we can see that the vertex $\left(u_{4}, v_{1}\right)$ can be mapped to the vertex $\left(u_{2}, v_{1}\right)$ since the second and fourth columns are the same. Also, the arc $\left(\left(u_{1}, v_{1}\right),\left(u_{4}, v_{1}\right)\right)$ will be mapped to the arc $\left(\left(u_{1}, v_{3}\right),\left(u_{2}, v_{3}\right)\right)$ since the vertex $\left(u_{4}, v_{1}\right)$ is mapped to the vertex $\left(u_{2}, v_{3}\right)$ and the vertex $\left(u_{1}, v_{1}\right)$ is mapped to the vertex $\left(u_{1}, v_{3}\right)$, and so on, see Fig. 4 .
(b)Let $D_{1}=\left(V_{1}, A_{1}\right)$, where $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}, \mathrm{A}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}\right\}$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $V_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, A_{2}=\left\{e_{5}, e_{6}, e 7, e 8\right\}$, see Fig. ${ }_{5}(a)$

Figure 5
Let $f\left(D_{1}\right)$ be defined by $f\left\{u_{4}\right\}=\left\{u_{2}\right\}, f\left\{e_{1}, e_{2}\right\}=\left\{e_{3}, e_{4}\right\}$ and $g ~ Ð\left(D_{2}\right)$ be defined by $g\left\{v_{1}\right\}=\left\{v_{3}\right\}, g\left\{e_{6}\right.$ $, e 8\}=\left\{\mathrm{e}_{5}, \mathrm{e} 7\right\}$. Then the cartesian product dimap $\mathrm{h}=\mathrm{fxg}: \mathrm{D}_{1} \times \mathrm{D}_{2} \rightarrow \mathrm{D}_{1} \times \mathrm{D}_{2}$ is defined as follows:
$h\left\{\left(u_{4}, v_{2}\right),\left(u_{3}, v_{1}\right)\right\}=\left\{\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right)\right\}$, and so on. Also , $h\left\{\left(\left(u_{4}, v_{2}\right),\left(u_{1}, v_{2}\right)\right),\left(\left(u_{3}, v_{1}\right),\left(u_{3}, v_{2}\right)\right)\right\}=$ $\left\{\left(\left(u_{2}, v_{2}\right),\left(u_{1}, v_{2}\right)\right),\left(\left(u_{3}, v_{3}\right),\left(u_{3}, v_{2}\right)\right)\right\}$, and so on, see Fig. ${ }_{5}$ (b) .The adjacency matrices of D_{1}, D_{2} and $D_{1} \times D_{2}$ are as follows:

$$
M\left(D_{1}\right)=\begin{aligned}
& u_{1} \\
& u_{1} \\
& u_{2} \\
& u_{3} \\
& u_{4}
\end{aligned}\left[\begin{array}{llll}
u_{2} & u_{3} & u_{4} \\
u_{4} & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \quad, \quad M\left(D_{2}\right)=\begin{array}{llll}
v_{1} \\
v_{2} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left[\begin{array}{llll}
v_{2} & v_{3} & v_{4} \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and }
$$

		, v_{1})	(u_{2}, v_{1})	$\left(u_{s}, v_{1}\right)$	(u_{4}, v_{1})	(μ_{3}, ν_{2})	(u_{2}, v_{2})	($\mathrm{us}_{2}, \mathrm{v}_{2}$)	($44_{4}, v_{2}$)	(u_{v}, v_{3})	(u_{2}, v_{2})	(u_{3}, v_{2})	$\left(u_{v} v_{n}\right)$	(μ_{3}, v_{1})	$\left(\mu_{2}, v_{4}\right)$	(u_{3}, v_{0})	$\left(\mathrm{H}_{*} \mathrm{v}^{\text {d }}\right.$)
	$\left(u_{1}, v_{1}\right)$		0	0	0	1	0	0	0	0	0	0	0	1	0	0	07
	$\left(u_{2}, v_{1}\right)$	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0
	$\left(u_{3}, v_{1}\right)$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
	$\left(\mu_{4}, v_{1}\right)$	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
	$\left(u_{1}, v_{2}\right)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$\left(u_{2}, v_{2}\right)$	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
	$\left(u_{3}, v_{2}\right)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$M\left(D_{1} \times D_{2}\right)$	($\left.u_{4}, v_{2}\right)$	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
$M\left(D_{1} \times D_{2}\right)$	(u_{1}, v_{2})	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
	$\left(u_{2}, v_{2}\right)$	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0
	$\left(u_{3}, v_{2}\right)$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
	$\left(u_{4}, v_{2}\right)$	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	1
	$\left(u_{1}, v_{4}\right)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	($\left.u_{2}, v_{4}\right)$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
	$\left(u_{3}, v_{4}\right)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$\left(\mu_{4}, v_{4}\right)$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0

Once again we can describe the digraph foldings by using $M\left(D_{1}\right)$ and $M\left(D_{1} x D_{2}\right)$.For example, from $M\left(D_{1} \times D_{2}\right)$ we can see that the vertex $\left(u_{4}, v_{2}\right)$ can be mapped to the vertex $\left(u_{2}, v_{2}\right)$ since the ${ }_{6}$ th and 8 th rows have the same entries. And the vertex $\left(u_{3}, v_{1}\right)$ can be mapped to the vertex $\left(u_{3}, v_{3}\right)$ since the ${ }_{3} r d$ and ${ }_{11}$ th rows are the same. Also, the arcs $\left(\left(u_{4}, v_{2}\right),\left(u_{1}, v_{2}\right)\right)$ and $\left(\left(u_{4}, v_{2}\right),\left(u_{3}, v_{2}\right)\right)$ can be mapped to the arcs $\left(\left(u_{2}, v_{2}\right),\left(u_{1}, v_{2}\right)\right)$ and $\left(\left(u_{2}, v_{2}\right),\left(u_{3}, v_{2}\right)\right)$,respectively, since the ${ }_{6}$ th and 8th rows are the same. Finally the arcs $\left(\left(u_{3}, v_{1}\right),\left(u_{3}, v_{2}\right)\right)$ and $\left(\left(u_{3}, v_{1}\right),\left(u_{3}, v_{4}\right)\right)$ can be mapped to the arcs $\left(\left(u_{3}, v_{3}\right),\left(u_{3}, v_{2}\right)\right)$ and $\left(\left(u_{3}, v_{3}\right),\left(u_{3}, v_{4}\right)\right)$, respectively, since the ${ }_{3}$ th and $11^{\text {th }}$ rows are the same. And so on, see Fig. ${ }^{5}(\mathrm{~b})$. ${ }_{(6)}$ The composition of digraphs

Definition (6-1)

The composition $\mathrm{D}_{1}\left[\mathrm{D}_{2}\right]$ of two simple diagraphs is a simple diagraphs with $\mathrm{V}\left(\mathrm{D}_{1}\left[\mathrm{D}_{2}\right]\right)=\mathrm{V}_{1} \times \mathrm{V}_{2}$. The vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent if either u_{1} is adjacent to v_{1} and $u_{2}=v_{2}$ or $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}.

Definition (6-2)

Let D_{1}, D_{2}, D_{3} and D_{4} be simple diagraphs.Let $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{4}$ be diagraph maps . By the composition dimap $f[g]$: $D_{1}\left[D_{2}\right] \quad D_{3}\left[D_{4}\right]$ we mean a map defined as follows
I. If $\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{V}\left(\mathrm{D}_{1}\left[\mathrm{D}_{2}\right]\right)=\mathrm{V}_{1} \mathrm{x} \mathrm{V}_{2}$, then $\mathrm{f}[\mathrm{g}]\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right\}=\left\{\left(\mathrm{f}\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{v}_{2}\right)\right)\right\} \in \mathrm{V}\left(\mathrm{D}_{3}\left[\mathrm{D}_{4}\right]\right)$
II. Let $e=\left\{\left(\left\{\mathrm{v}_{1}\right\} \mathrm{i},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\left\{\mathrm{v}_{1}\right\} \mathrm{k},\left\{\mathrm{v}_{2}\right\}\right)\right\}$.If $\left\{\mathrm{v}_{1}\right\} \mathrm{i}=\left\{\mathrm{v}_{1}\right\} \mathrm{k}$ and $\left\{\mathrm{v}_{2}\right\}$ j is adjacent to $\left\{\mathrm{v}_{2}\right\}$ I,
then $f[g]\{e\}=\left\{\left(\left\{v_{1}\right\} \mathrm{i}, g\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\left\{\mathrm{v}_{1}\right\} \mathrm{i}, \mathrm{g}\left\{\mathrm{v}_{2}\right\} \mid\right)\right\}$.Also, if $\left\{\mathrm{v}_{2}\right\} \mathrm{j}=\left\{\mathrm{v}_{2}\right\}$ l and $\left\{\mathrm{v}_{1}\right\} \mathrm{i}$ is adjacent to $\left\{\mathrm{v}_{1}\right\} \mathrm{k}$, then $\mathrm{f}[\mathrm{g}]\{\mathrm{e}\}=\left\{\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\} \mathrm{i},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\} \mathrm{k},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right)\right\}$.

Theorem (6-3)

Let D_{1}, D_{2}, D_{3} and D_{4} be digraphs. let $f: D_{1} \rightarrow D_{3}$ and $g: D_{2} \rightarrow D_{4}$ be digraph maps. Then the composition dimap $Đ\left(D_{1}\left[D_{2}\right], D_{3}\left[D_{4}\right]\right)$ is a digraph folding if $f \bigoplus\left(D_{1}, D_{3}\right)$ and $g \in \bigoplus\left(D_{2}, D_{4}\right)$ are digraph foldings .

Proof:

Let f and g be digraph folding, then
I. For each vertex $v=\left(v_{1}, v_{2}\right) \quad V\left(D_{1}\left[D_{2}\right]\right)=V_{1} x V_{2}, f[g]\left\{\left(v_{1}, v_{2}\right)\right\}=\left\{\left(f\left(v_{1}\right), g\left(v_{2}\right)\right)\right\}$.But $f\left(v_{1}\right) V\left(D_{3}\right)$ and $g\left(v_{2}\right)$ $V\left(D_{4}\right)$, then $\left\{\left(f\left(v_{1}\right), g\left(v_{2}\right)\right)\right\} \vee\left(D_{3}\left[D_{4}\right]\right.$, i.e., $f[g]$ maps vertices to vertices .
II. Let $e=\left\{\left(\left\{\mathrm{v}_{1}\right\} \mathrm{i},\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\left\{\mathrm{v}_{1}\right\} \mathrm{k},\left\{\mathrm{v}_{2}\right\} \mid\right)\right\}$ and suppose $\left\{\mathrm{v}_{1}\right\}$ is adjacent to $\left\{\mathrm{v}_{1}\right\} \mathrm{k}$, then there exists an arc $\left\{\left(\left\{v_{1}\right\} i,\left\{v_{1}\right\} k\right)\right\} \in A_{1}$, since f is a digraph folding and $\left\{\left(\left\{v_{1}\right\} i,\left\{v_{1}\right\} k\right)\right\} \in A_{1}$, then $f[g]\{e\} \in A\left(D_{3}\left[D_{4}\right]\right)$. Now, if $\left\{\mathrm{v}_{1}\right\} \mathrm{i}=\left\{\mathrm{v}_{1}\right\} \mathrm{k}$ and $\left\{\mathrm{v}_{2}\right\} \mathrm{j}$ is adjacent to $\left\{\mathrm{v}_{2}\right\}$, then $\mathrm{f}[\mathrm{g}]\{\mathrm{e}\}=\left\{\left(\left\{\mathrm{v}_{1}\right\} \mathrm{i}, \mathrm{g}\left\{\mathrm{v}_{2}\right\} \mathrm{j}\right),\left(\left\{\mathrm{v}_{1}\right\} \mathrm{i}, g\left\{\mathrm{v}_{2}\right\} \mid\right)\right\}$, since $\left\{\mathrm{v}_{2}\right\} \mathrm{j}$ is adjacent to $\left\{\mathrm{v}_{2}\right\} \mid$, then there exists an $\operatorname{arc}\left\{\left(\left\{\mathrm{v}_{2}\right\} \mathrm{j},\left\{\mathrm{v}_{2}\right\} \mid\right)\right\} \in \mathrm{A}_{2}$ such that $\left\{\left(g\left\{v_{2}\right\} j, g\left\{v_{2}\right\} \mid\right)\right\} A_{3}$, i.e., $g\left\{v_{2}\right\} j \neq g\left\{v_{2}\right\} \mid$ and hence $f[g]\{e\} A\left(D_{3}\left[D_{4}\right]\right)$, i.e., $f[g]$ maps arcs to arcs.
The converse is not true since if $f[g]$ is a digraph folding and f, or g, is not a digraph folding . In this case f, or g, maps an arc to a vertex, say $f\left(u_{1}, v_{1}\right)=\left(u_{3}, u_{3}\right), u_{3} \in V\left(D_{3}\right)$.Then
$f[g]\left\{\left(u_{1},\left\{v_{2}\right\} i\right),\left(v_{1},\left\{v_{2}\right\} j\right)\right\}=\left\{\left(f\left(u_{1}\right), g\left\{v_{2}\right\} i\right),\left(f\left(v_{1}\right), g\left\{v_{2}\right\} j\right)\right\}=\left\{\left(u_{3}, g\left\{v_{2}\right\} i\right),\left(u_{3}, g\left\{v_{2}\right\} j\right)\right\}$ which is an arc of $D_{3}\left[D_{4}\right]$.

Example (6-4)

Let D_{1}, D_{2},f and g be the digraphs and digraph foldings given in Example (5.4). The adjacency matrix of $D_{1}\left[D_{2}\right]$ is as follows :

		$\left(u_{1}, v_{1}\right)$	$\left(u_{2}, v_{1}\right)$	$\left(u_{3}, v_{1}\right)$	(u_{4}, v_{1})	(u_{1}, v_{2})	(u_{2}, v_{2})	(u_{1}, v_{2})	(u_{4}, v_{2})	($u_{1,}, v_{3}$)	$\left(u_{2}, v_{3}\right)$	(u_{3}, v_{2})	(u_{4}, v_{2})
$M\left(D_{1}\left[D_{2}\right]\right)=$	$\left(u_{1}, v_{1}\right)$	${ }^{0}$	1	0	1	1	1	0	1	0	1	0	1
	$\left(u_{2}, v_{1}\right)$	0	0	1	0	0	0	1	1	0	0	1	0
	$\left(u_{3}, v_{1}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
	(u_{4}, v_{1})	0	0	1	0	0	0	1	1	0	0	1	0
	$\left(u_{1}, v_{2}\right)$	0	1	0	1	0	1	0	1	0	1	0	1
	$\left(u_{2}, v_{2}\right)$	0	0	1	0	0	0	1	0	0	0	1	0
	$\left(u_{3}, v_{2}\right)$	0	0	0	0	0	0	0	0	0	0	0	0
	$\left(u_{4}, v_{2}\right)$	0	0	1	0	0	0	1	0	0	0	1	0
	$\left(u_{1}, v_{3}\right)$	0	1	0	1	1	1	0	1	0	1	0	1
	(u_{2}, v_{3})	0	0	1	0	0	1	1	0	0	0	1	0
	$\left(u_{3}, v_{3}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
	(u_{4}, v_{3})	0	0	1	0	0	0	1	1	0	0	1	0]

Now a digraph folding $f[g]$: $D_{1}\left[D_{2}\right] \rightarrow D_{1}\left[D_{2}\right]$ can be defined as follows:
$f[g]\left\{\left(u_{4}, v_{1}\right),\left(u_{4}, v_{2}\right),\left(u_{4}, v_{3}\right),\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{1}\right)\right\}=\left\{\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right)\right.$,
$\left.\left(u_{2}, v_{3}\right),\left(u_{1}, v_{3}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{3}\right)\right\}$. Also ,f[g]\{($\left.\left.u_{4}, v_{1}\right),\left(u_{3}, v_{1}\right)\right)$,
$\left.\left(\left(u_{3}, v_{2}\right),\left(u_{3}, v_{1}\right)\right),\left(\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)\right)\right\}=\left\{\left(\left(u_{2}, v_{1}\right),\left(u_{3}, v_{3}\right)\right),\left(\left(u_{3}, v_{2}\right),\left(u_{3}, v_{3}\right)\right)\right.$,
$\left.\left(\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right)\right)\right\}$, and so on, see Fig. 6 .

Fig. 6

We can describe the digraph foldings by using $M\left(D_{1}\right), M\left(D_{2}\right)$ and $M\left(D_{1}\left[D_{2}\right]\right)$. For example , from $M\left(D_{1}\left[D_{2}\right]\right)$ we can see that the vertex $\left(u_{4}, v_{1}\right)$ can be mapped to the vertex $\left(u_{2}, v_{1}\right)$ since the second and fourth rows have the same entries. Also, the arc $\left(\left(u_{1}, v_{1}\right),\left(u_{4}, v_{1}\right)\right)$ can be mapped to the arc $\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right)\right)$ since the second and fourth rows are the same. Also the vertex $\left(u_{1}, v_{1}\right)$ can be mapped to the vertex $\left(u_{1}, v_{3}\right)$ since ${ }_{1}$ st and 9th rows have the same entries, and so on .

REFERENCES

[1]. R.Balakrishnan and K .Ranganathan, text book of graph theory, Springer -Verlag, Inst. New York (2000).
[2]. A.EL-Esawy: Cayley folding of manifolds , Ph.D Thesis. Tanta University, Egypt (2005)
[3]. E.El-Kholy and A.Al-Esawy : Graph folding of some special graphs, J.Math. \& Statistics 1(1) , 66-70(2005).
[4]. E.El-Kholy and H. Ahmed : Folding of Digraphs
[5]. R.J.Wilson \&J.J.Watking, Graphs: An introductory approach, John Wiley and Sons, Inc.(1990).

